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We present a general discussion of the Thomas-Fermi (TF) and Thomas—Fermi-Dirac
(TFD) approximations for the ground state properties of matter in a magnetic field taking all
Landau levels into account. In the course of doing this we review some facts that are common
to all theories of the TF type. Such theories are defined by specifying the energy density w of
the electron gas as a function of the electron density n subject to some mild general
requirements. Convexity of w is not needed, but singularities in Vn occur if d?w/dn? is
not strictly positive. We also point out that the no binding theorem of TF theory holds
irrespective of the shape of w. In TF theory with a magnetic field d*w/dn? vanishes when new
Landau bands begin to be populated and singular features in density profiles show up at such
densities. These singularities are a rigorous consequence of quantum mechanics in the sense
that TF theory becomes exact in the limit when the nuclear charges and the number of
electrons tend to infinity, provided the magnetic field is scaled by the same factor as the charges
to the power $. Apart from these features an atom with nuclear charge Z in a field of the order
of 10°x Z*? gauss exhibits a distinct shell structure associated with the Landau bands. The
exchange energy of a homogenous electron gas in a magnetic field is computed in a
Hartree-Fock approximation. In particular we obtain closed expressions for the exchange
energy for abitrary Landau bands. The inclusion of the exchange energy leads in TFD
theory to jumps in the electronic density at which the density of electrons in some Landau
band changes discontinously from zero to a finite value. A gradient correction
(von Weizsdcker term) in the energy functional smooths out the discontinuities, but
divergences in the density gradient reappear if the nuclear charges and the magnetic field tend
to infinity as above.  © 1992 Academic Press, Inc.
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]. INTRODUCTION

The natural atomic unit for a magnetic field is B* =m2e’c/h* = 2.35x 10° gauss.

1 fields of this strength the Landau energy of an electron becomes comparable
ith the Rydberg energy, and the magnetic field has a decisive influence on the
roperties of matter. Although such high fields have not yet been produced in a
srrestrial laboratory, they do occur in an astrophysical context, in particular at the
arfaces of neutron stars, where fields are deduced to be as high as 10'>-10"* gauss
see, e.g., [1]). In laboratory semiconductors the characteristic field strength for the
harge carriers may be considerably less than B*, since carrier effective mass can be
juch smaller than the electron mass, and the Coulomb potential is dielectrically
creened. t

Theoretical studies of matter in high magnetic fields have been carried out using
. variety of methods, see, e.g., [2-16]. Among these the Thomas—Fermi (TF) and
“homas—Fermi-Dirac (TFD) approximations used in [2-7] stand out as being
yarticularily simple yet adequate for many purposes. Models of this type have been
horoughly studied in the past for the case of zero magnetic field [17-20]. In par-
icular, the status of TF theory as an approximation to quantum mechanics was
igorously established in [18-21]: The theory is asymptotically exact in the limit
vhen the nuclear charges and the number of electrons tend to infinity. This result
:an be generalized to the case where a magnetic field is present, provided the field
strength is appropriately scaled together with the charges, cf. [22] and Section III
selow. Hence theories of TF type are expected to give a good picture of the ground
state energy and the gross properties of a system of heavy nuclei and electrons. On
‘he other hand, they are too crude to describe effects as delicate as molecular
sinding [ 18-20, 23].

In this paper we discuss various aspects of the TF and TFD approximations for
the ground state of matter in a homogenous magnetic field, including a brief discus-
sion of von Weizsicker corrections to the energy functional. Previous treatments
[2-7] have'been concerned mainly with fields so strong that only the lowest
Landau level is occupied. This is also the case in the papers [24,25] that deal
among other things with the extensions of the theory to non-zero temperatures.
By contrast, as in [26] our emphasis is on effects that appear when more than
one Landau level has to be taken into account. The basic aim is a qualitative
understanding of these effects.

The paper is organized as follows. We begin, in Section II, with a summary of
properties that are common to all theories of TF type. Applying an argument due
to Benguria [27] we note that convexity of the energy density is not essential for
the existence of a solution to the TF equation. On the other hand, a deviation from
convex behavior will manifest itself as a singularity in the gradient of the electron
density. We also point out that the no-binding theorem of TF theory is a very
general result that does not depend on the detailed form of the energy density.

In Section ITI we consider the TF approximation without exchange for matter in
a magnetic field. The kinetic energy density wy;, is a convex function of the electron
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density n, but the second derivative d*wy,/dn* vanishes where a new Landau band
begins to be populated. This leads to a singularity of Vn at such densities. We dis-
cuss the scaling properties of TF theory with a magnetic field and the parameter
range where the theory can be expected to be a valid approximation of the exact
quantum-mechanical theory. In this section we also present the results of numerical
TF calculations of the electronic densities of atoms in strong magnetic fields. Due
to the scaling relations the profiles depend essentially only on the ratio B/Z*?3,
where B is the magnetic field strength and Z the nuclear charge. When this ratio
is of the order 10° gauss, a TF atom shows a clear shell structure that is barely
visible for much higher or much lower fields.

In Section IV we compute the energy density for a homogenous electron gas in
a Hartree-Fock approximation including the exchange energy. This computation
reveals a “swallowtail” instability in the neighborhood of the densities at which
Landau bands begin to be occupied, and the energy density is no longer a convex
function of the electron density. We then discuss qualitative features of TFD theory
with a magnetic field. The non-convexity of the energy density leads in the TFD
approximation to density jumps that are determined by a Maxwell construction.
We estimate the size of these jumps for the case when the ratio between the
magnetic length 1= (#*/eB)"* and the Bohr radius a, may be regarded as a small
parameter, and we find them to be of order (Iz/a,) In(ay/ls), compared with the
density steps determined by the Landau levels.

In Section V we consider the influence of the correction to the TFD energy func-
tional of lowest order in the gradient of the electron density (von Weizsdcker term).
This term involves the response function of the electron gas in a magnetic field. We
do not attempt a detailed discussion of its form, but argue that it will smooth
density profiles and effectively remove the jumps. The singular features of the TF
approximation, however, are still present in the limit of high nuclear charges with
an appropriately scaled magnetic field.

II. GENERAL FACTS ABOUT THOMAS—FERMI AND THOMAS—FERMI-DIRAC THEORIES

In this section we discuss some general properties that are common to all TF and
TFD theories. Most of what we have to say is explicitly or implicitly contained in
the (vast) literature on the subject, e.g., in Lieb’s comprehensive review article [20].
Nevertheless, we find it useful to collect these facts before we discuss the special case
of matter in a magnetic field.

The TF method is the oldest and simplest case of a density functibnal theory (see,
e.g., [28-30]). The total energy of a collection of electrons and nuclei is written as
a functional &[n], where the density of electrons, n=n(r), is a function of the
position, r. For a system having K nuclei with charges Z,e at fixed positions R;,
i=1, .., K, one assumes that & has the form

En]=&n]+Veolnl+¥z[n] + %, 2.1
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where the various terms are defined as follows. The n-independent term

e*Z.7.
e e 22
2 IR;=R,| e

i<j

is the Coulomb interaction energy of the nuclei, and

\ﬁw?uu,$%=quzax (2.3)
with
eZ;
Vie)=) ——— ‘ 2.4
i) (24)
the interaction energy between electrons and nuclei. The term
e? rrn(r) n(r')
v = 3 3.7 .
celn] 5 Q Ty d3r d’r (2.5)

represents the direct part of the Coulomb interaction between the electrons, and
&@;qugﬁza: (2.6)

the kinetic part of the electronic energy (in TF theory), or the sum of the
kinetic energy and the exchange energy (in TFD theory). In Thomas-Fermi—
von Weizsdcker theory &, depends also on Vn; we shall consider that case in
Section V.

The ground state energy of the system, E'F, is given by the infimum of é[n]
subject to the condition that n >0 and that the total electronic charge is fixed:

T;:&#HZ. (2.7)

For simplicity we shall in this paper almost exclusively consider neutral systems,
N=Z+ - +Zg=:Z (2.8)

Seneralizations to positive ions, N < Z, are straightforward, but occasionally they
nake the discussion slightly more cumbersome. Negative ions, N> Z, do not exist
n TF theory (cf [20, Theorem 2.5]).

A minimizing density » for (2.1) solves the TF equation

=0 if nr)>

0
W) = e = el 5o it ngr)=0
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where the prime denotes differentiation with respect to n,

n('y .,

D(r)=V(r)—e 3& r (2.10)
is the total electrostatic potential, and the Lagrange multiplier y,,, is determined by
condition (2.7). Conversely, a solution of (2.9) minimizes & with the subsidiary
condition (2.7), where N is uniquely determined by pu,,. For n(r)>0, Eq. (2.9)
can be written

_06[n] dE™
o= 500) = aN

(2.11)

so its physical meaning is that the total electrochemical potential of an electron is
everywhere equal to the constant p,,.

The following conditions on w guarantee the existence and uniqueness of a
solution to (2.9) and (2.7) for N<Z (apply Theorem 3.18 in Lieb [20] with

J(m)=w(n)—w'(0)n):
(i)

(ii) For large n, w'(n)=c-n"*** with ¢ and &> 0.

(iii) For small n, w'(n) <w'(0)+c'n'?*% ¢’ < o0, £>0.

w(0)=0, w is continuously differentiable and convex.

We now comment on these conditions. If (ii) is not satisfied, &[n] need not be
bounded below: If w(n)=const-#¥*> and n(r) behaves like [r—R,["?~9 in a
neighborhood of the nuclei, then &[n] — — oo for ¢ —» 0. This corresponds physi-
cally to the pressure of the electron gas being insufficient to prevent atoms from
collapsing. If (iii) is not satisfied, then (2.9) need not have a solution satisfying (2.7)
for all N< Z. The reason is that if w(n) is too large at low densities it pays energeti-
cally to reduce the electron density by pushing part of the charge towards infinity.
The infimum of & over all n with a given total charge then is not a minimum.

As for condition (i), we remark that convexity of w seems at first to be an essen-
tial ingredient of the existence proof, which uses techniques from nonlinear func-
tional analysis [19, 20]. However, as we shall see below, this assumption is in fact
superfluous because the theory automatically “corrects” any deviation from convex
behavior of w. Before discussing this in more detail we comment on the physical
significance of this convexity.

If v=n"" denotes the specific volume of the electron gas, then # =uv-w is the
specific kinetic (plus exchange) energy, and

dan (v)

Pi.=— —r w'(n)n —w(n) (2.12)

can be interpreted as the local electronic pressure. Indeed, it follows from the TF
equation (2.9) that

VP, ,.=en Vo, (2.13)
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which is precisely the condition for hydrostatic equilibrium between the Coulomb
forces and the pressure gradient. If w is convex and w(0)=0, then obviously

P =0. (2.14)
The compressibility « of the electron gas is given by

Kl=—v Proe
dv

=n?w"(n). (2.15)

Hence convexity of w is equivalent to x> 0. We also note that P, is the Legendre
transform of w, so Py, is a convex function of = w" if w is convex.

Suppose now that w is not convex in some density interval, i.e., that w”(n) =0 for
n <n<n®, say (see Fig. 1). We claim that the solution of the TF equation (2.9)
does not take on values in this interval. In fact, suppose n*) <n(r) <n® for all r
in some region. By (2.9) we then have V2®(r) =0 for these r. But this contradicts
V2®(r) =4rne[n(r)— Y, Z,6(r — R,)] which follows from (2.10). (This remark is due
to Benguria [27], cf. Lieb [20, Theorem 3.19]. Note that it applies also if the
positive charge has a continuous distribution, as long as the positive charge density
avoids intervals where w is not strictly convex.)

The argument above can also be stated in terms of the compressibility and
pressure of the electron gas as follows:

If w”(n) vanishes for some n, then the compressibility diverges at this density.
This can be interpreted as a phase transition with the densities ") and #® at the
end points of the interval with w” =0 corresponding to pure phases. In fact, the
electronic chemical potential, given by

wm)=w'(n)= o, +ed, (2.16)

(n

3
3

with w” =0 for n'"’ <n <n'®. The solution of the
2)
L=

FiG. 1. An example of a convex energy density,
TF equation does not take values in the interval (n
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and the pressure (2.13) satisfy the equilibrium conditions
pw(n) = pu(n®) v (2.17)
and

NV_OGAS:J = NV_QGAEANJ. AM—WV

Because the compressibility diverges for n between n'") and n®, it is clear that
mixtures of the two phases (with intermediate densities between n™) and n®) can
be stable only in regions where the pressure is constant. But if VP, (r) =0, then
V2®(r)=0 by (2.13). This is impossible for nonvanishing densities because @ has
to satisfy the Poisson equation V?®(r) =4ne[n(r)—3; Z;6(r —R,)].

The observation that the solution of (2.9) avoids flat portions of the graph of w’
leads to an interesting generalization of the results considered so far:

A unique solution to the TF problem, i.e., of Egs. (2.9) and (2.7), exists for any
energy density, w, with the property that its convex hull

w¥(n)=sup{l(n)|l(n')y=a-n"+b, (n")<w(n')} (2.19)

satisfies conditions (i)-(iii) stated above. Moreover, this solution is identical to the
solution with w replaced by w¥*.

To prove this claim (cf. Theorem 6.8 in Lieb [20]), we note that w* <w, so
E*[n] < &[n], where &* denotes the functional (2.1) with w replaced by w*. Hence
inf &*[n] <inf&[n]. On the other hand, if n»* denotes the (unique) density
with inf &*[n] = &*[n*], we have &[n*]=4E*[n*], because n* omits the values
where w and w* differ. Thus, &[n*]=&*[n*]=inf £*[n] <inf&[n], so n* is a
minimizing density for &. This density is unique because n #n* implies &[n*] =
E¥[(n*]< X [(n]<é[n].

Figure 2 illustrates the points discussed above. Note that although w” >0 on

ww*
E/

Sﬁov SA: DANV
| + ; >
N n

/// —-
N -
e \/&*
FiG. 2. An example of an energy density, w, with its convex hull, w*. The TF equation has no

solutions with densities less than 7% or in the interval (n‘!), n®).
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parts of Eo 582.&. between n'') and n®, these densities are also excluded. The
wﬂm_n applies to the interval (0, n*)) in Fig, 2; here we note that for densities below
n™" the pressure would be negative. The density 7' is a minimal density >0 for

the TF :50.&.\ corresponding to an energy density w of this shape. It is determined
by the condition

Pioo(n®@) = w'(n@)n©@ — 1y(n®) =, (2.20)

mSoo. n n%ﬁ tend to zero at infinity, it is clear that a system with such a minimal
density n'® > 0 has a finite spatial extent with the density dropping abruptly to zero
at the boundary. A calculation for a single atom with a w of the shape shown in

ﬂm.wio:_amwoimaosm:%?.oammm EoEHoa5Em.wmwEooo:.amwos&nm%m:a
P, are shown schematically in Figs. 3b and 3c. _

nt@!
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FIG. 3. The figure shows in a schematic way the results of a typical TFD calculation for an isolated
atom with the energy function shown in Fig. 2: (a) The density profile. The electron density, n, decreases

monotonically from co at the nucleus to 7 at r =r, (edge of the atom). At r =7 there is a jump in the
. 5 : .

density from n® to n'"). At the edge dn/dr =0. (b) The electrostatic potential, ®. This behaves as Ze/r

for small » and decreases monotonically to 0 at »=r,. The potential is continuous everywhere (also at

r=7F) and vanishes at the edge. (c) The local pressure, P, diverges for small r and decreases to 0 at
the edge. dP/dr also vanishes at the edge and is discontinuous at r = 7.
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Isolated zeros of w” for an otherwise convex energy density will also lead to
singular behaviour of the electron density. In fact, by the TF equation (2.9) we have

Vn(r)=e VO(r)/w"(n(r)). (2.21)

Hence the density gradient diverges if w” approaches zero. As we shall see in Sec-
tion IT this situation occurs in the TF approximation for matter in a magnetic
field, leading to a density profile of the type shown in Fig. 6.

The last subject we discuss in this section is the absence of molecular binding in
theories of the TF type. About 35 years ago Sheldon [31] discovered by a numeri-
cal calculation that the N, molecule has no stable equilibrium in the TFD
approximation. This was explained several years later when Teller [23] proved the
so-called “no-binding theorem” for the TF and TFD theories. Subsequently the
problem was investigated in a more rigorous fashion and extended by Lieb and
Simon [18, 197, Benguria [27], and Lieb [20].

The no-binding theorem can be stated in the following way: Consider a collection
of nuclei fixed in space surrounded by electrons. Then the TF approximation for
the energy of the collection will always decrease if the nuclei are separated into two
or more groups which are moved far away from each other, ie, EZE, + E, + -+,
where the E; are the TF energies of the individual subgroups and E is the original
TF energy of the collection. This means, in particular, that in TF theory any
molecule is unstable under decomposition into isolated atoms. The no-binding
theorem clearly demonstrates the approximate nature of the TF method, since real
atoms do bind to form molecules.

In his original paper Teller investigated molecular binding in matter with the
energy density w used in standard TF and TFD theories for zero magnetic field:

w(n) = wyn(n) = {3(3n%)** #*/(10m) } n°> (2.22)
for TF theory, with m the electron mass, and
w(n) = wiin(1) + wex(n) (2.23)
with
We(11) = — (4/3)(3/n)" 2> (224)

for TFD theory.

The papers by Lieb, Simon, and Benguria are also concerned mainly with these
special forms of w. However, their extension of Teller’s work is in fact quite general,
and it follows from Theorem 3.23 in Lieb [20] that binding does not occur for any
w satisfying conditions (i)-(iii) in the previous section. This is also obvious from the
proof given in Lieb [32] for w(n)=const-n*>. Granted the existence of a solution
for (2.9), the only special property of this function, that is used, is its convexity.
But, as discussed above, the TF energies calculated with an arbitrary w are the
same as those calculated with its convex hull, w* Thus the no-binding theorem
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olds for any w, provided its convex hull satisfies conditions (i)-(iii) above so that
ie TF approximation is well defined. The energy density for matter in a magnetic
:ld that is discussed in the next sections fulfills these requirements.

Closely related to the no-binding theorem is the positivity of the global pressure.
or a finite system with nuclei in arbitrary positions, there are various ways of
sfining the global pressure, but the following is perhaps the most natural one
20, 33]: One considers a uniform dilation of the system, such that the nuclei move
om R, to aR,. The TF energy E'" of the system then becomes a function of 4,
nd one defines

dE™F 1 dE™F
P = — = — . . 2.25
glob d(a®) 3a® da (:25)

‘ositivity of the global pressure means that the system is unstable with respect to
scal dilations, not only under the global dilation a — oo, as claimed by the no-
inding theorem. When the nuclei are arranged in a regular lattice, one can think
f a as measuring the size of the unit cell. In the Wigner—Seitz approximation,
vhere the unit cell is approximated by a sphere, (2.25) is precisely the definition
f pressure used in Fushiki e al. [7]. As shown in Appendix B of that paper,
his pressure is equal to the local pressure (2.12) at the boundary of the spheres.
\ccording to the discussion in the previous section, the local pressure is always
>0, so the same holds for the global pressure in this approximation.

A general proof of the positivity of (2.25) is, of course, more difficult. It has been
arried out by Benguria and Lieb [33] for the standard TF theory with w as in
2.22). Although we expect that it also holds for general w under the same condi-
jons as the no-binding theorem, it is not known to us whether the proof of Lieb
ind Benguria can be extended to cover this case.

III. TaHOMAS-FERMI THEORY FOR MATTER IN A MAGNETIC FIELD

In this section we recall the basic properties of the uniform electron gas in a
nagnetic field in the absence of electron-electron interactions and investigate
jualitative features of TF theory with the corresponding energy density. We also
sonsider the scaling properties of TF theory and discuss its expected range of
ralidity.

The energy levels of a non-relativistic free electron in a homogenous magnetic
ield B are given by

! ”

0 _ _ b7
E g AQ.T +o :§+NE, (3.1)

2

vhere o is a non-negative integer specifying the Landau band, ¢ is the spin compo-
rent and p is the momentum component along the field, 1 is the electron mass, and
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wpy=eB/(mc) is the cyclotron frequency (see, e.g., Landau and Lifshitz [34]). In
addition, there is a degeneracy that can be indexed, e.g., by the orbital angular
momentum M along the field; the number of states per unit area is (2n/%) ! with
I,= (hic/(eB))'/* the magnetic length, that is, one state for every quantum of
flux hcfe.

We note that the magnetic length can be written as /5= aq(B/B*)™ "2, where
ag=H2/(me*)=0.529 x 10~ cm is the Bohr radius and B* =m’e’c/h’=2.35x 10°
gauss is the natural atomic unit for the magnetic field. In terms of By, :=
B[ gauss]/10'2 one has, therefore, /5= 2.57 x 107'°B,"? cm, or ao/lz=20.7 BiZ.

If one chooses the vector potential to be Bxr/2 (symmetric gauge), and uses
cylindrical coordinates p, z, ¢, with the z-axis in the direction of the field, one may
write the wavefunctions as

1 o'l 12
VY paone(Ps 2, &u% (M| +a')!
x eiPlhgiMoy|Mig =12 1M1(n2yy (3.2)

cf. [34]. Here L is the normalization length in the direction of the field, n=

ET\M 1), L? are associated Laguerre polynomials (normalized as in [35, p. 7757),
and y, is the spin-3 wavefunction. The angular momentum M takes integer
values from o« down to —oo, and o' =a for M <0, o'=a—M for M=1,.., 0.
For the lowest Landau band, o=0, the wavefunction g, is proportional to
eiM M= al5oinziny,  Since the single-electron energies do not depend on M, the
occupation number, f,,, is in thermal equilibrium independent of M.

Let n,,, denote the density of electrons with given values of p, &, and ¢ but
arbitrary values of M. We have

Mo = Jpaa /(2115 L) (33)
and the energy density is
w= M mwﬂaﬁwnqu Aw.h.v
pUc

where in the ground state the sum is over the lowest energy levels for a given total
electron density

n=y, Mg (35)
puc

The Fermi momentum of a band oo is
Piwe = {2m(p— (04 0+ 3) fiwy) } 2 0(p— (0 + 0 + 3) hwp), (3.6)

where u=dw/dn is the chemical potential (Fermi energy) and 0 denotes the
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Heaviside step function. The particle density in the band is n,, =
replacing 3", by L [#%_ dp/(2nh), we obtain

2p Npuys and,

PFy

\w\.‘RQ
= 37
:RQ NAﬂm\mvw A v

Since the single particle energy depends on .« and ¢ in the combination
v=(0.+ 0+ %), we may replace the sum over « and ¢ by one over non-negative
integers v. The states with v=0 are singly degenerate, corresponding to « =0 and
o = —3, while those for v>0 are doubly degenerate, corresponding to o=v,
o=—4% and a=v—1, =4 If one introduces the dimensionless variable
{ = p/(hwy) one may write =73, n, as :

(2]
n=n, | P42y ((—v)"?|, (3.8)
v=1

where

2 [eB\*? 1

g2 pe T2

153=4.24%107B¥2 cm 3 (3.9)

and [{] denotes the integer part of {. In the same way we obtain for the
energy (3.4)

1 (<1
:\”w:*&ﬁcw mu\ M (C+2v Aﬁ|<v ‘ Aw_.Ov

The density at which the vth band begins to be populated, i.e., for which { =y,
is by (3.8)

v—1
:M.VH:* 242 M v—1') ; AwHHv
vi=1
From (3.11) one finds

(D —nNn =y + (v4+ 1) (3.12)

and thus
nil E\S:*,_ﬂ (3.13)

for large v. As was to be expected this result agrees with that for a three-dimen-
sional Fermi gas in zero magnetic field, n = p3/(3n*h?), for pp = (2mu)">.
From (3.8) it follows that just above n{’,

u(n)=hwg ,_+~|TI::J + O(ln—n&"?) (3.14)
2
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and
w(n)=wnQ)+hwg| v (n—n)+ wl. (n—=n$)? + O0(|ln—n|%) (3.15)
n
with co=1and ¢, =} for v > 1. In particular, the second derivative d? w/dn® = dy/dn

vanishes if n Ssam ﬁoémam n{’ from above. On the other hand, for n % n{
one has by (3.10)

[¢1 —1
(T2 ) (E—-w)12 |, (3.16)

v=1

d*w  2hwy
—=
dn My,

and if n tends towards n{’ from below one obtains

N\\ v—1 —1
10 g <r:~+m M T_I.:VL\N ) a.:v

* vi=1

w'(nl_)=
n

Thus d*w/dn® is discontinuous at n=n$’. For large v (3.17) can be approximated
as

hao g h? (13

w'nW ) —Ey- 2 () 7P 3.18
(n-) =~ 2n, m\ 3 * 0 ( )

cf. the zero field case (2.22). Plots of w(n), u(n), and w”(n) are shown in Fig. 4.
Next we discuss the scaling properties of TF theory for matter in a magnetic field.
Inverting (3.8) we can write

p=thwzfi(n/n,) = Bf(n/B*?*) (3.19)
and, hence,
w="Hwzn, W(n/n,) = B’*F(n/B*?). (3.20)

From this it follows that the TF equation (2.9), which for w' >0 may be written as

w'(n(r)) = [e@(r) + pio + » (3.21)
and the normalization condition [nd’r =Y, Z, are invariant under the following
substitutions:

Z,—aZ,,
B — a*B,
R,—a PR, (3.22)

4/3
»::.: —da \\:O_u

n(r) — a*n(a'r)=:n,(r).
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hwgn,

:’*lt
€

FiG. 4. (a) The energy density, w(n), of the homogeneous electron gas in a magnetic field without
the exchange contribution. The dashed line shows the result corresponding to matter in zero field,
which may be written as w=(1/10)(3%/2)! u:*‘:,_m?\:%vmu. (b) The chemical potential, yu(n)=w'(n),
corresponding to the energy density in (a). The dashed line shows the zero field result. (c) The second
derivative of w with respect to n, w”(n), for the energy density in (a). The dashed line shows the zero
field result.
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FIGURE 4—Continued

Moreover, the energy functional (2.1) has the scaling property
&[n,; aZ;, a*?B, a '*R;1=a"?&[n; Z;, B, R,] (3.23)
and the TF energy, E™" =inf{&[n]|[nd’x =3, Z,}, transforms accordingly:
E™(aZ,, a**B, a~'R,)=a"*E"™(Z,, B, R,). (3.24)

A notable feature of the scaling relations (3.22) is that the inter-electron spacing
and the magnetic length both scale as a~*>. It is this fact that makes the electron
energy scale simply. One consequence of the scaling laws is that the shape of an
atom in TF theory depends only on B and Z in the (dimensionless) combination

B/B*
= 743

B (3.25)

More precisely, in a plot of n/Z? (or of n/n,) as a function of Z'? x|, all atoms
look the same for fixed . The charge distribution for different values of f§ is shown
in Fig. 5. For weak fields, i.e., f <1, as well as strong fields, ie., f> 1, the density
profiles look smooth; for B of order 1, however, they have clearly discernable
features associated with the occupation of new Landau bands. These features are
shown in a closeup in Fig. 6. In Fig. 7 the radial density r°n(r) is plotted for an iron
atom (Z =26) and field strength B=10"" and 10'* gauss. The corresponding values
of f are 0.55 and 5.55. The shell structure due to the magnetic field is particularly
distinct in the former case.
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FiG. 5. The charge distribution in an atom in a magnetic field as calculated by the TF method for
several values of = (B/B*)/Z*>,

n(r) a4 T T T T T T T
{(10%cm?) 40
26 B=10" gauss 4
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Fi1G. 6. Close-up of the singular features of an atomic density for = 0.55.
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Fi16 7. A plot of r?u(r) as a function of r in TF theory for an iron atom (Z=26) in a magnetic of
B=10" and B=10'? gauss. The corresponding values of § are 0.55 and 5.5.

A qualitative understanding of these profiles is easily obtained by solving (2.21)
for densities just above n{’ with the approximations V& ~ eZ/(Z~3a,)> ~Z?
and w" ~ B~*(n—n{). If r*) denotes the radius at which n=n$’ one finds

(n—n{) ~ BZ¥5(r™) — )72,
or, equivalently,

(n—nlN)/Z2~ B(Z'P(r™) — 1)), (3.26b)

as r approaches r) from below. On the other hand, n(r) has a finite slope if r
approaches r) from above, by (2.21) and (3.17). It should be noted that
singularities in the density gradient are present at all values of f. From (3.26b) and
the fact that (n{*" —n{))/Z?~ B*? (3.12), one can see that these features become
invisible as f — 0, however. For f> 1 the singularities occur only very close to the
nuclei, where the density gradient is high anyway.

In the strong field regime, > 1, we can approximate w(n) at the relevant den-
sities by 3fmpn’/ni~n’/B% In this regime the theory is approximately invariant
under additional scaling transformations for fixed Z; [57]:

B — bB,
R, - b R, (3.27)

n(r) = bn(b*°r),
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with

E™ o p?PETE, (3.28)
From (3.27) and (3.22) it follows that for f> 1 the radius of an atom is propor-
tional to Z'°/B*°. In a plot as above, Fig. 5, the radius of an atom thus shrinks
as f~%° for f— 0.

As mentioned in the Introduction it can be rigorously proved that TF theory
with a homogenous magnetic field is a scaling limit of quantum mechanics. For
zero magnetic field this was shown by Lieb and Simon [18, 19] and Baumgartner
[21], cf. also Lieb [20, section V]. The proof given in [20] was extended to the
case of a homogenous field in [227], making use of the B-independent lower bound
for the kinetic energy established in [36]. The precise assertion is as follows:

Let E?M(Z,, B, R;) denote the exact quantum mechanical ground state energy
and n?®™(r; Z,, B, R,) denote the corresponding electronic density (assuming here
for simplicity that there is a unique ground state). Then

lim E®M(aZ,, a*B, a~ "R )/a"* = ETF(Z,, B, R;) (3.29)
and
lim n®™(a="v;aZ,, a*?B, a='"*R,)a* =n""(x; Z;, B, R}), (3.30)

a— w0

the convergence of n°™ to the TF density n'F being in the weak L, sense.

Note that the way in which quantum mechanics passes over into TF theory is
dictated by the scaling properties (3.22) and (3.23) of the latter. As a supplement
to the rigorous proof in [22] we shall below try to make the limit theorems
plausible by comparing the various length scales of the problem. At the same time
one obtains some insight into the parameter range where the approximation may
be expected to be good. For the case of strong fields similar discussions may be
found in [3-5].

The basic lengths for an atom are the Bohr radius a, = #%/(me?) and the magnetic
length /= (fic/eB)"*. The strong field case,

B*Z%3 < B, (3.31)
corresponds to /< Z ~*3a, and the weak field case,
B< B*Z, (3.32)

to /5> Z ~*ay; the length Z~*a, can be regarded as the mean electronic separa-
tion in zero field. Let 7 denote the mean radius of the charge distribution. The
Fermi wavelength Ay at electronic densities of order Z/i> is Ay ~7/Z"? in the weak
field case and A ~/(Z1%) for strong fields. We estimate 7 by equating the kinetic
energy ~ #%/(mA%) and the Coulomb energy of an electron, Ze?/r. This gives

= = i3
F~Z "aq

(3.33)

@
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for weak fields and

P (Zagly)'P = =22~ Paq (3.34)
for strong fields. We expect TF theory to be a reasonable approximation if Ap <7,
This is equivalent to the conditions

1<z (3.35)

for weak fields and

B< B*Z> (3.36)
for strong fields. A Z-B diagram indicating the curves B~ Z*?B* and B~ B*Z3
and the expected domain of validity of the TF approximation for isolated atoms is
shown in Fig. 8a. Note that TF theory is certainly bound to fail for B> Z3B*; such
fields have been called “ultrastrong” [37, 3] or “superstrong” [4].

In bulk matter the Wigner—Seitz radius, ., enters as a new basic length. In terms
of r,, the volume per nucleus is 4nr2/3. In dense matter one has r,<Z g,
and r.<(Zayl%)"® by (3.33) and (3.34). The last condition may also be
written B < Z'?(ay/r.)** B*. The strong field domain, where essentially only the
lowest Landau band is populated is here characterized by I,<Z~'"’r,, ie,
Z?(ay/r,)? B* < B. These conditions become a little more transparent if we
introduce a dimensionless “compression parameter”

a=2Z"Pay/r,; (3.37)

a b B=72"%q 2

B

log m* J mnNa\u log .ml*
B B=I

Fig. 8. (a) ZB diagram for a single atom. WF: weak field, f < 1. SF: Strong field, pg>1 mmm“
superstrong field, > Z°A. (b) ZB diagram for compressed matter, o> 1, f < o5, WF: weak field, f <o"
SF: strong field, > 2. SSF: superstrong field, f > Z 2 Shaded area: expected range of validity of the
TF approximation.
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he parameter range for “dense matter in a strong field” is now given by o« > 1 and
a?Z*PB* < B< 27 B*, (3.38)

Nithin this range the condition for validity of the TF approximation is Ar <r,, or
:quivalently,

’

B < B*q2Z°%", (3.39)
n terms of the matter density p:=dAm,/(4nr}/3) (A=atomic number,

n,=nucleon mass), one can write (3.38) as

Nu\u NH\N
(4nay/3m,)** B* v p*? < B< (4may/3m,)¥° B* VEG p8 (3.40)
and (3.39) as
2/3 3 N 2/3
B < (4nay/3m,)*> B* —= p?°. (3.41)
p \Ar\w

(In [7], where (3.41) also occurs in a slightly different form, there is a misprint:
The power of Z should there be 3, not 2.)
It should be noted that outside the range of Eq. (3.38), i.e., for weak fields or
isolated atoms, one can reasonably expect the previously discussed conditions to
- remain valid. For B<a*?Z*?B* the condition is thus simply Z <1, and for
a*Z*3B* < B one should require B < Z>B*. These conditions are illustrated in a
Z-B diagram in Fig. 8b.

Using the parameter f§ instead of B one may summarize the preceding discussion
as follows: TF theory of an atom is characterized by a single parameter f
measuring the field strength, and bulk matter has essentially one additional
parameter, the compression paremeter «. Without restriction one can assume ¢ to
be no less than 1; bulk matter and single atoms can be discussed in a unified way
if one defines o=1 for single atoms. In dense matter f<a«*? and for a®<f we
speak of strong fields. The quantum-mechanical ground state depends not only on
o and f, but also in a nontrivial way on the nuclear charge Z. One expects TF
theory to be a good approximation to quantum mechanics if

1 for B<a?
ZWP> {Bla* for o< f<a’? (3.42)
BYS  for «%<p.

IV. HARTREE-Fock ENERGY FOR THE HOMOGENEOUS ELECTRON GAS AND
THOMAS—FERMI-DIRAC THEORY

In Thomas-Fermi-Dirac theory the energy density w includes not only the
kinetic energy but also the exchange part of the Coulomb interaction for the
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homogenous electron gas. An account of TFD theory in the absence of a magnetic
field may be found in, e.g.,, Gombas [17], Bethe and Jackiw [381], and Lieb [20]
The exchange energy in a strong magnetic field has been discussed by Danz and
Glasser [39], Banerjee ef al. [4], Rau et al. [16], Fushiki et al. [7], and used fo;
TFD calculations of the properties of atoms and solids [2-7]. In these works the
magnetic field was assumed to be so strong that only the lowest Landau band had
to be considered.

In this section we discuss qualitative features of TFD theory of matter in g
magnetic field allowing for occupancy of more than one Landau band. A measure
of the importance of the exchange corrections is obtained by estimating the con-
tribution the exchange energy makes to the total energy of matter. As in the case
of TF theory, it is convenient to consider the limit of large Z for fixed B/Z*3, The
size of the exchange hole around an electron has a characteristic size of order the
inter-electron spacing, ~a,/Z*?, and therefore if the exchange energy may be
treated as a perturbation its magnitude is ~ Z*¢*/a, per electron or ~ Z%3?/q,
per atom, which is Z~?*° times the leading contribution. One thus expects
TFD theory to pass over into TF theory for Z — oo, in accordance with the
limit theorems discussed in the last section. This is further substantiated by the
considerations below.

The basic assumption of TF and TFD theory is that locally the energy density
is given by that for a homogeneous electron gas, and the main part of this section
is devoted to its computation in a Hartree-Fock approximation. In accordance
with the basic assumption we can, in this computation, ignore inhomogeneous
states such as charge density waves and Wigner crystals (see, e.g., [40-427]). A
tendency to form inhomogenous states is, however, latent in the homogeneous
electron gas, for we show that it exhibits a first-order phase transition each time
a new Landau band begins to be occupied. In TFD calculations these transitions
lead to jumps in electron density profiles as discussed in Section IL

For the three-dimensional electron gas in the absence of a magnetic field trans-
lational invariance ensures that the self-consistent Hartree-Fock orbitals must be
plane waves for all directions of the electron motion, which greatly simplifies the
calculations. In the presence of a magnetic field only the motion-along the field has
plane wave character, while perpendicular to it the motion is more complicated, as
described by the wave functions (3.2) in the absence of electron—electron interac-
tions. The electron—electron interaction will generally alter the character of the orbi-
tals perpendicular to the magnetic field. If, for example, the effect of the exchange
interaction were simply to alter the effective mass, m*, of electrons for motion per-
pendicular to the field, the wave functions would still be given by Eq. (3.2), but
their energies for translational motion would be given by (o + 3) iw¥, where a.cwu
eB/(m*c) is the renormalized cyclotron frequency. In general, the orbitals @: be
modified by the interaction, and their energies will be given by more complicated
expressions. They will, however, still be degenerate with respect to the @cw::::
number M. The calculation of the self-consistent orbitals is a difficult task which we
shall not attempt here for two reasons. First, the exchange energy is generally a
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minor contribution to the total energy. Second, we are particularly interested in
>xploring qualitative effects which occur when a new Landau band begins to be
dopulated. These effects are associated with the motion along the field, and we do
10t expect their character to be influenced by modifications in the orbitals. We shall
‘herefore perform a restricted Hartree-Fock calculation in which we assume that
‘he single particle orbitals are given by Eq. (3.2). We note that the exchange poten-
ial depends explicitly on spin, since the populations of sub-bands of opposite spin
liffer, and this effect, as well as that associated with the translational motion dis-
sussed earlier, implies that the energies of orbitals (and their occupation numbers)
1o not depend on ¢ and ¢ only in the combination o + o, as they did in the absence
>f the exchange interaction, cf. Eq. (3.4). This lifting of degeneracy, however, is a
imall effect that does not affect leading order calculations.

We turn now to the calculation of the energy in the Hartree—Fock approxima-
ion. The kinetic energy density is again given by Eq. (3.4). Here mwé is the energy
3.1) of a free electron in a magnetic field, but the distribution function N,y tO be
nserted here must be determined self-consistently, allowing for the effects of
:xchange. Next we consider the Coulomb interaction. Its long-range part will in the
[FD calculation be taken care of by the term (2.5) in the energy functional, and
or the homogenous electron gas we assume that this part is compensated by a
miform neutralizing background of positive charge. Thus the interaction energy to
»e calculated in the Hartree-Fock approximation is the exchange energy, which is
thown in Appendix A to be given by

1
Wex = —73 M ﬁ\xhﬁ\w - N\v :wnqzmﬁav A#Hv
NE&?
vith
- = -y NN —iqz/h
Vald)=2m | pdp [ dee L) L) ol e, 42)
vhere y = p?/(2/%) and L, and L, are Laguerre polynomials.
The matrix element, V.s, may also be written as
Vaplq) = 201307 F (/2 qly/h), (4.3)
/here
= £ L&) Ly(&)e”
?;.cnio £ dE bx dl cos(2x() i (4.4)

he evaluation of F,; is described in Appendix B, and the results of numerical
alculations of the functions Fy,, Fo; = Fyq, and F,, are plotted in Fig. 9. For small
we have by Eq. (B.9), .

Foo(x)= —In((z+1)x?) + O(1), (4.5)

—

e
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Fi1G. 9. The functions Fyy(x), Fo(x) = Fyo(x), Fy(x).

whereas F,; stays bounded at zero if o % f8. For large x the functions F,; decrease
as 1/x2.

The behaviour of F,p(x) for small x can be understood by noting that Vap(q) - n,
is essentially the Coulomb energy of an electron at the origin interacting with a
charge distribution of length ~7/q in the z direction, and whose distribution
perpendicular to the field is given by e 7L, (y) Ly(y). For o= f the characteristic
dimension of the distribution in the latter directions is of order of the cyclotron
radius of an electron in level «, ie., (204 1)1, Thus V,,-n, is basically the
potential at the center of a rod with length #/g, width ~ (20 + 1)"?/,, and charge
e/l per unit length. Hence,

V@)~ 15e? In[h/((204 1) I5q)] (4.6)

for g <h/((204 1) 1p). If o # B, the net charge associated with the distribution
vanishes, because of the orthogonality of the Laguerre polynomials, and thus there
is no logarithmic term.

To find the ground state in Hartree-Fock theory one must minimize the total
energy density functional

I\ﬁﬁhu&,u = Wgin _HEEGH_ ¥+ Wex ﬁkvnqu Ak\wv

by varying n,,, subject to the constraint that the number density of electrons
remain constant,

(4.8)

Y, Ryye =1,

paa
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The minimization may be carried out in two stages: first, a minimization keeping
fixed the total number of electrons in each Landau band, n,, =2p Npyos S€CONd, a
minimization with respect to the populations of the bands, _Son_:m fixed the total
number of electrons n=>3,. n,,

Since the exchange interaction — ¥/, is a monotonically increasing function of |g|
it is simple to show that for a single Landau band the lowest energy state is
achieved by filling all orbitals with momenta whose magnitudes are less than some
value, pg, the Fermi momentum for the band. For the case of many bands we shall
assume that a similar result holds, with each band having its own Fermi momen-
tum,

E\.‘&QHNNN\W&:RQ . AA.QV

(cf. Eq. (3.7)). This appears very plausible, and when exchange between different
bands is ignored it can be verified by the same arguments as for a single band. Since
exchange between bands plays no significant role in the considerations below, we
feel justified in not presenting a formal proof for the general case.

If all distribution functions are of the form M,,e = const. - 0(pp,, — |pl), we can
write

1 1
Wiin =Hwgn, Y, 9+q+m k§+w>‘wq , (4.10)
where x,, :=n,,/n,, and
P
Wer = — 2 (2} S [FOe xg) = FO(1x,— X)), (411)
2. /27 \%/ 185
with
mSEL.. % Fog(x') d’ dx". (4.12)
0 Y0
For small x,, one has by (4.5)
Nﬂﬁiﬁ qu” INHWQ _EAAQlT _vHva+QAP\RQV Ahva
Moreover, for o # 5,
Nﬂw.mavﬁ .T\/.uav ANVA Xug — duu_v NNHMA_\WVH Qv &Q;TQAHRQV A&ML.V
with
F)(x) = dF&)(x) E«# Fp(x') ', (4.15)

Plots of F{)) and F () for the lowest values of & and f§ are shown in Figs. 10 and 11.

MATTER IN A MAGNETIC FIELD 53

X
Fic. 10. The functions F{(x), F{P(x) = F{)(x), F{P(x).

The chemical potential of band oo is

. _ow[n,,]
Koo = mzna
1 1 /
=hog|(at+o+z|+x2,————(2
2 2/2n\4

XM ﬁm..whmv .Xnnn*nk.\wavlmﬁbxﬁal\&\wav NHMA.H%A «dunlx&un_vu_ » A#H@v

where ¢(x) is the step function with value +1 for x>0 and —1 for x <0. For small
X

FL(2%,5) = —=2x,, In((e+ 1) x3,) + O(x,,) (4.17)
by (4.5), and
N«JMVXH&Q Hnav|mA‘dna uav .NH.A:A_HRQ|\K\WQ_V
= 2F, 5(xp,) + O(x2,) (4.18)
if o p. N
Returning now to the second stage of the minimization, a necessary condition for

the ground state to satisfy is that the chemical potentials of all populated bands are
equal,

Hag = s AL.HGV
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Fic. 11. The functions F&(x), F&(x)=F3(x), FE(x).

for all oo such that n,,>0, where p is a common chemical potential. Moreover, a
band o'c’ is empty only if its chemical potential, evaluated at n,,. =0, is larger
than pu.

A somewhat unexpected result is that there can be multiple solutions to these
equations, corresponding to different local minima of the energy, for fixed total den-
sity. The basic reason for this is that the chemical potential of each band has a
negative slope for low densities in the band, due to the exchange interaction. To
explore these solutions in more detail we shall restrict ourselves to the case of fields

Hv

m—— e

\L.N\on

>

ny

_
0

FiG. 12.  Sketch of the chemical potential, u, = u,(n,) in a band with a low population,

®
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Fic. 13. Schematic picture of the chemical potential, u, versus total density, n, for the model
discussed in the text.

sufficiently strong that /z/a, may be regarded as a small parameter and consider
only the Landau levels ao with /z/a, < (o4 1) ~'2 (Note that the restriction on B
does not exclude that the field is “weak” in the sense of Section III if Z is sufficiently
high and/or matter compressed, because /z/aq= (B/B*)~ 2= 12723

By Egs. (4.16)—(4.18) one can in leading approximation assume that the chemical
potential of a band o¢ with a low population is a function of n,, alone. Moreover,
to the same accuracy one can as in the free case index the bands by v=0+ 0+ 3,

>
S

n

FIG. 14. Schematic picture of the energy function, w, versus total density, n, obtained by ::om.qm::m
u(n)=w' shown in Fig. 13. The lowest Hartree-Fock energy density, w = w(n), is obtained by cutting off
the “swallowtail.”
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FiG. 15. Numerical solutions to the Hartree-Fock equations for the homogeneous electron gas for
v=1 and B=10®% gauss. (a) The chemical potential, x. (b) Blowup of the curve in (a). (c) The energy

i i FIGURE 15—Continued
density, w. (d) Blowup of the curve in (c).
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keeping in mind that the all energy levels with v>1 count double. The chemical
potential of band v can then approximately be written

R ; 2 Amm,_v:N lp 1/2
(X)) = 1,(0) + fiw exvt——|(— x,In((v+1)"x,) [,  (420)
: 0

where x,=n,/n,, and ¢y=1, ¢,=1/4 for v> 1. A sketch of y, is shown in Fig. 12.
The minimum of (4.20) is for /z/ay < (v+ 1)~ '/? obtained at

x,=O0(1)(Ig/ae) In[ao/((v+ 1) 1)1, (4.21)

so the lowest energy of the band is
(1 )min = 1,(0) — O(1) hieo p (1 5/ag)* In?[(ao /(v + 1) 1) ]. (4.22)

Now suppose v>=1 and let us imagine that we start with a chemical potential
slightly below the bottom of band v and gradually add electrons, at first to the
bands with index lower than v. Then u(n) will increase until » takes on the value,
@™, for which u(i{")=pu,(0). Since the exchange contributions to the chemical
potential are negative, these densities are slightly higher than the threshold densities
n") for the free case considered in Section III. If we now put a few electrons into
band v, p, will at first decrease and the equilibrium condition = pu, can be satisfied
only by removing electrons from the lower bands. Since for small n, the negative
slope of u, as a function of density is larger than the positive slope of p for the
lower bands at the equilibrium value p= u,, more electrons have to be removed
from the lower bands than are put into the higher one. Thus the total number den-
sity decreases and so does the chemical potential. This is demonstrated in Fig. 13
which shows i as a (multivalued) function of the total density n. The decrease of
n stops at the value 715" where the negative slope of the chemical potential of band
v is matched by the positive slope of the potential for the lower bands, but u keeps
decreasing for a while until finally it starts to bend upwards again when the bottom
of band v is reached.

Since p=dw/dn we can also use Fig. 13 to draw a schematic picture of w. The
result is shown in Fig. 14 and the results of a numerical calculation for v=1, in
Fig. 15. The “swallowtail” of the w curve corresponds to the backward bending of
the pu curve. For the corresponding total electron densities the energy density has
at least two local minima as a function of the populations of the individual bands.
The lowest Hartree—-Fock energy density is obtained by cutting off all swallowtails.

From these considerations it is also clear that w(n), with the tails removed, is a
non-convex function of » in the neighborhood of each of the threshold densities.
The chemical potential u(n) = dw(n)/dn, drops discontinuously at each of the criti-
cal densities 7", where the lowest branches of w cross, and the electron population
in the higher band increases discontinuously from zero to a finite value. The den-
sities /i) are determined by an equal area construction in the un plane, cf. Fig. 16a.

MATTER IN A MAGNETIC FIELD . 59

p(n) b

\
n (v) n (v)
| (v) 2
An

Fi. 16. (a) Equal area construction to determine . In a u(n) plot, the density i at EEA.& the
occupation of the second level increases discontinuously is determined by the equal area construction as

3

' shown in the figure. Note that there is a discontinuous jump in p at the critical density ™. (b) Equal

area construction to determine the density jump An®.

As discussed in Section I the relevant energy density for TFD calculations is
actually the convex hull of w, obtained by a double tangent construction from the
graph of w as shown in Fig. 17, or equivalently, by an equal area construction as
in Fig. 16b. The flat portions of the corresponding chemical potential can be inter-
preted as first-order phase transitions of the homogenous electron gas. In TFD
calculations these transitions lead to jumps in the electron densities.

We now estimate the size of the singular features in the graphs of p and w. Con-
sider first the width of the swallowtail, 47®) =7{" — 7", The slope of y/fiwy as a
function of the density in bands lower than v is of the order O(1)(v+ 1)~ % in the
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w,w

=Y

FiG. 17. The convex hull, w*, of the energy function, w, for the model discussed in the text. w* is
obtained by means of a double tangent construction. The density jump, 4n", is indicated in the figure.

neighbourhood of A\ ~n™), cf. Eq. (3.17). If Igz/a, < (v+1)~'72 then this slope
matches the slope of p, for

x,=0(1)(v+ 1)~ exp[ —O0(1)ay/((v+ 1) 15)], (4.23)
with a corresponding value of the chemical potential
= 1,(0) — i s O(1)(v + 1)~ exp[ — O(1)ao/((v + 1)"? 1)]. (4.24)
Hence,
A n,=0(1)(v+ 1)~ exp[ —O(1) ao/((v+ 1) 15)]. (4.25)

The density jumps An™ =n}"—n{") associated with the phase transitions (see
Figs. 16b and 17) are estimated by equating chemical potentials and pressures at
n{") and nY’. By (2.11) the pressure is P =pun—w. Since the chemical potentials
are equal and the contribution of the higher band to the energy is additive, the
equilibrium condition for the pressure means simply that the partial pressure of the
higher band must vanish:

(4.26)

Moreover, the population of the lower bands does not change, while that of band
v jumps by 4n™=n, x,. With (4.20) one finds

Anfn, = O(1)(Ip/aq) InLao/((v+1)"2 1,)]. (427)

Q,
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(3)

(2)

>
>

Fic. 18. Schematic density profile of an atom in a magnetic field, obtained in a TFD calculation.

Since Iz/a,=p~">Z 7, this can also be written as

An®fn,=0(1) p~Z - In[BZ/(v+ 1)*]. (4.28)

In Fig. 18 we show schematically an atomic profile in TFD theory with f~ 1.
The smoothing effect of a von Weizsicker term in the energy functional on the
discontinuities will be discussed in the next section.

V. GRADIENT CORRECTIONS

Thomas-Fermi theory rests on the assumption that the electronic density varies
slowly on length scales characteristic of the electron gas, such as a typical ::ow.
electronic distance. This condition is not always fulfilled, and, to overcome this
deficiency of the theory, von Weizsicker [43] added to the TF energy functional
for zero magnetic field a correction term of the form

N w
BTl =1 [ air \luzmu e

&m
where ¢ is a number of order unity. For density fluctuations of small amplitude

(5.1)
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whose spatial scale is small compared with the Fermi wavelength, von Weizsdcker
argued that {=1. For the case of finite magnetic field, this result still holds,
provided the scale of density variations is small compared with the Fermi
wavelengths and the magnetic length, /;, as we now show. Following, e.g., Jones
and Gunnarsson ([28, Section I1.B2) the change in the energy density of an non-
interacting electron gas when there is a small density variation is given by

H
SE=—
NM x(q)

|6n,|?

! (5.2)

where on, is the Fourier transform of the density fluctuation and y(g) is the static
density—density response function of the free electron gas given by

2
iSnMNltl_:iz_ ; (5.3)

k Do

Here w,o=¢, — & is the energy of the excited state, k, relative to that of the ground
state, and n, is the Fourier transform of the electron density operator.

When the wavelength 27n/g is small compared with Fermi wavelengths and the
magnetic length, the electron wavefunctions behave as plane waves on length scales
.Zmﬁ\a. Consequently the leading contribution to the excitation energies for ¢ — co
is the recoil energy, /#°¢g*/2m. Thus we may write

240 1 (1, )10l > 20 1(1,) 10l
Ha)=Y k0 1 (1 )kol lM» k0 | (1) ol . (5.4)

= oby (72q’/2m)?

From the f-sum rule (see, e.g., [44]) the numerator is n/%g>/m, and thus

\mw
XLST.LWQ“ (5.5)
:~:

and the expression (5.2) then reduces to the form of Eq. (5.1), with é=1.

The arguments given above demonstrate that, for short wavelength density fluc-
tuations, the von Weizsicker term does not depend on the magnetic field. This con-
clusion has also been reached recently by Abrahams and Shapiro [25] by a direct
generalization of von Weizsdcker’s original argument. For zero field another expres-
sion for the von Weizsdcker term has been derived by considering long-wavelength
fluctuations, as discussed, e.g., in [28], and one finds that the coefficient ¢ is &. If
one carries out the analogous calculations for electrons in a magnetic field, one
finds that the the von Weizsdcker term is no longer isotropic, but may be written
in the form

h?

S [ drLfy(n, BYVyn) + £ (0, BYV )], (5.6)

2m
where V|, and V, are the components of the gradient in directions of the field and

MATTER IN A MAGNETIC FIELD 63

perpendicular to it, respectively. The anisotropic form reflects that there are two
sets of microscopic lengths in the problem, the Fermi wavelengths which are impor-
tant for density variations along the direction of the field, and the magnetic length
which is important for variations perpendicular to the field. The functions f; m:a,
1 have a rather complicated dependence on # and B, and they may be aoanha_::oa
from results for the density—density response function X in a magnetic field, which
has been explored in some detail by Yakovlev and Shalybkov [45]. One interesting
fact is that f}, can be negative.

Let us now estimate how the von Weizsiicker term for small wavelength
fluctuations (5.1) will affect electron density profiles. When it is included in TF
calculations it leads to the integro-differential equation

H*E (Vn)?  H¥Vn
I]IN[.||+ \&sz”t—onl_lmeu AM\NV

8m n dm n

which should be compared with Egs. (2.9) and (2.16). The von Weizsicker term
has the effect of smoothing out density profiles. In particular near a nucleus the
density tends to a constant, rather than diverging as it does in TF theory. The
von Weizsicker term will lead to an energy per particle of order #%/(2ml?), where
[ is the characteristic length in spatial variations of the density. Near the nucleus
this term will become comparable to the electrostatic energy, which tends to the
bare Coulomb energy Ze/r if r ~ I~ a,/Z. The volume within radius / contains ~ 1
electron, and the contribution to the total energy from the von Weizsicker term is
of order #%/(2ml*) ~ Z?¢*/a,, compared with the TF energy which varies as Z7/3.

That the von Weizsicker term gives corrections of order Z? has been shown
rigorously for the case of zero field by Lieb [20], and the qualitative behavior of
this correction is the same as Scott [46] conjectured for the leading correction to
TF theory in a full quantum-mechanical treatment (see also Lieb [207). The Scott
conjecture has recently been proven for atoms in zero magnetic field [47]. The
corresponding result with a magnetic field would be

EON(Z, B)=Z"P(E™(B)+ Z~PE,(B) + O(Z ")) (5:8)

but this has has still to be rigorously demonstrated.

The features of density profiles where new Landau bands begin to be occupied
are also smoothed out by the von Weizsdcker term. Consider the square-root
singularity in TF theory shown schematically in Fig. 19. One may estimate the
characteristic length over which the singularity in the TF theory is smoothed by
arguing that in TFW theory the von Weizsicker energy must be comparable to the
difference in electrostatic potential across the region. Since the electric field is of
order Ze/(ay/Z'3)? ~ Z5Pe/a?, this condition gives

#2/(2mi?) ~ Z el a? (5.9)
or

I~ay/Z%°. (5.10)
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FiG. 19. The figure indicates the smoothing out of the infinities in the slopes of TF density profiles
when a von Weizsdcker term is introduced in the calculation of an atomic profile.

In TF theory the density behaves as (see Eq. (3.26b))
NN
(n—n\~B==5[Z"3r" —r)]1", (5.11)
do

and therefore the interval dny, where the density is appreciably modified by the
von Weizsidcker term, is given by

&:E\( I_.;NN\T@. AMHNV

Ny

Thus the fraction of the profile over which the smoothing is important tends to
zero, albeit rather slowly, for Z — co. We also note that the density range over
which one expects smoothing exceeds the magnitude of density discontinuities in
TFD heory, since dny ~ Z>° An"), cf. Eq. (4.28). The exchange energy will there-
fore have only minor effects on the density profiles calculated in TFW theory. In
the limit Z — co with f fixed, the gradient correction vanishes and divergences in

the density gradients reappear at the densities n',’.

VI. CONCLUDING REMARKS

In this paper we have studied a number of general features of TF-type theories
of matter in a magnetic field, placing particular emphasis on the case when more
than one Landau band is occupied. For ordinary TF theory, in which the effects of
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exchange are neglected, we have shown that the ground state energy and electron
density have simple transformation properties if the nuclear charges and the
magnetic field are scaled simultaneously. Simple estimates of corrections to TF
theory suggest that these should be small in the limit as the nuclear charges tend
to infinity. In fact, the quantum mechanical limit theorems for zero magnetic field
[ 18-21] have recently been generalized to the case where a magnetic field is present
[22], establishing rigorously that TF theory with a magnetic field is a scaling limit
of quantum mechanics.

In high magnetic fields, electron density profiles calculated in the TF approxima-
tion exhibit a shell structure distinct from that which exists in the full quantum
mechanical treatment for zero field. Our estimates of the range of validity of TF
theory and the rigorous limit theorems of [22] suggest that, for heavy atoms and
field strengths in a certain range determined by the nuclear charge, this shell struc-
ture is real, and not just an artefact of the TF approximation. Detailed numerical
calculations of density profiles and thermodynamic properties in TF theory are
being carried out by O. E. Régnvaldsson and will be reported in a separate publi-
cation. As a consequence of the singular features in density profiles in TF theory,
one might expect singularities in the equation of state of bulk matter. However,
these turn out to be weak, and the density is a smooth function of the pressure,
with an oscillating component, which is the high field manifestation of the de
Haas—van Alphen and related effects that are more familiar in the case when rather
many Landau bands are occupied. To what extent TF calculations are a reliable
guide to the magnitude of these effects in matter with large nuclear charges remains
an open question.

A further remark on TF theory is that the scaling relations may be extended to
finite temperatures. The temperature must be scaled so that the ratio of the thermal
de Broglie wavelength, ~ 7~ "2 to the magnetic length, ~ B~ '/, remains constant.
Thus T should be scaled as B, that is, as Z*>. This result generalizes, to the case
of many Landau bands, one of the scaling relations derived by Abrahams and
Shapiro [25] for the case when a single Landau band is occupied.

As a preliminary to our study of TFD theory we investigated the exchange
energy of the uniform gas. We obtained expressions for the exchange energy which
are a generalization of earlier results for the case when only the lowest Landau
band is occupied. It was also shown that the uniform electron gas, with a back-
ground of positive change, exhibits first-order phase transitions as a function of
electron density. These are Peierls-type instabilities associated with motion parallel
to the magnetic field, and they are therefore distinct from density modulations in
the direction perpendicular to the field found in two-dimensional systems in a
magnetic field.

We have also drawn attention to the fact that there is no molecular binding in
TF theories of matter in a magnetic field. This result follows quite generally from
the earlier studies of Lieb, Simon, and Benguria, and it implies that TF-type
theories are too crude to yield any information about a zero pressure state of dense
matter in high magnetic fields.
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Some shortcomings of TF theory may be remedied in a somewhat ad hoc manner
yy inclusion of a von Weizsdcker term. As in the case of zero field, a rigorous
ustification for such a theory does not exist, and there are various ways of choosing
he coefficients of the gradient term. One complication in the case of a finite field
s that the von Weizsicker term is generally anisotropic, and for gradients of the
fensity parallel to the magnetic field, it can be negative. The utility of a EmoQ of
‘his type is somewhat limited at present, since there are few @cm:EB-BwormEom_
salculations of matter in a high field that can give guidance as to the choice of the

von Weizsdcker term.

APPENDIX A: CALCULATION OF THE EXCHANGE ENERGY

In this appendix we show that the exchange energy is given by (4.1) and (4.2).
In the uniform state, the electron distribution function is independent of M. Thus

the exchange energy may be written as

Wey = IW Y (pacM, p'a'a’M'| V |p'a'a' M, POTM ) Npotyrrgs (A1)

pp'aa'oMM’

where I is the Coulomb interaction potential. This is precisely of the form (4.1),
with
Vg(p—1')000 = S (pooM, p'Ba’M'| V |p'Ba’'M', pao M)

MM’

= M %ﬂ\w—. m&w-i_.bu.auq\::.\v %W.uns:.?.v
MM "

e’ ‘

x _‘_.I|—L_ .\\E‘mq,?\,? v %\En}\qv. A>Nv

The quantity

M %M&Q;sﬁﬂ\v K\ERS—\AWV = .\Enﬁﬂv —.\v A}WV ’,

M
may be evaluated by inserting the wavefunctions (3.2) and using the identities

. . (n+j)! & Lit¥(x+ y) (xp)
J (v J = >
LU L =0 2 =y 0

: T G Vi,
N\\:hdnfp@‘% M Y N:_ APV ﬁ>n:

!
o k!
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After a simple computation one obtains (cf. also Ando et al. [48, Eq. (6.14)]

QI xr) - 3/205] pip(z— ')/t

; 1
ST, X VH§
B

X L((r =1 )*/215) exp(—(r, —1')*/4l5), (A.5)

where Z is the unit vector in the direction of the field, z the component of r in this
direction, and r, is the component, perpendicular to the field. The L/s are
Laguerre polynomials, normalized as in [35, p. 775], ie., L,(0)=1.

The form of J,, can also be deduced by general gauge invariance arguments,
which are discussed for the case of the single-particle propagator by Horing [49]
and Schwinger [507]. In gauges other than the symmetric one the dependence on
(r, —r',) and (z—2z') is the same as in (A.5), but the phase factor will be different.
Formulas (4.1)-(4.2) for the exchange energy follow immediately from Egs. (A.2)
and (A.S).

APPENDIX B: THE FUNCTIONS F,, F{)) AND F§)

The function F,; that determines the exchange energy between Landau levels o
and f is given by (4.4). The integral over { can be performed using [51, p. 11517,

- m%wmw\w df = 2Ko(2xE), (B.1)

with the Bessel function K, behaving as

Ko(z) = |_=w+o5 A (B.2)

for small z. To carry out the integration over & it is convenient to use the
generating function for the Laguerre polynomials, cf. [35, p. 784 ]:

U5 = 3 L) = 2RE2IL=8)

A0 1—s

0<<s<l1. (B.3)
One thus considers

I, 0)=2 [ dye"U(y, 5) Uy, 0) Kof2x /)

0

= 7 dye—vatso M :w.é
-5 %o dye YOk (2x /),
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with
s t 1 —st
_ B.5
e P B s ve g (B.5)
Using [51, pp. 709, 10607, one obtains
1
I(x;s, )= T ——exp(x¥a(s, 1)) E,(x*/a(s, 1)) (B.6)
with ‘
B Sm\: _ Px A|MV:N[
min —du=—y—lnz— ¥ 1=, (B.7)

n=1

where y=0.577... is the Euler constant.
After series expansion in s and ¢ one obtains F,;(x) as the coefficient of s*t? in
(B.6). Since

(1 —st)"'In(1 —st)= — M M ! (st)*
a=1 »HH\A
— = Y (naty+O(1/a)s) (B.3)
=1
we have
F(x)=—In((a+1)x*) + O(1) (B.9)

for (o + 1)x* small, o >0, where the O(1)-term is uniformly bounded in x and . On
the other hand, because (1 —st)~'=3, (s1)* it is clear that if o # f8 then F,; has
no logarithmic term and stays, therefore, bounded at zero.

By writing (B.6) in the form

—N

I = e
I t d
(s, 2)= le; (x*a(s, 1))+ u !
P L e
=== du, B.1
x? .ﬁo 1+ (a(s, t)u/x?) . (R0
one sees that
F4(x) : +0 : B.11
xX)= — .
28 X2 ¢ ( )
for large x. In particular, the functions
FU)( “T% Fop(x') dx’ (B.12)
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that enter in the formula (4.16) for the chemical potentials have a finite limit for
X — o0, and the functions

F&(x) L FO(x') dx’ (B.13)
grow linearly with x for large x.

To evaluate F,;(x) more completely one may expand the integrand in (B.10),
obtaining

a+p ) 0 e
F, = Aup; X% | ————du,
5(%) H_M;_ g1 X %o i (B.14)
where
min(@ f) /o 2k
Aggz=(—1)*+F+2 % p (B.15)

o+ pf—2

izo \k/\k

is the coefficient of s*¢ in the power series expansion of (1 —st)~! (1 —a(s, £)~")*
Using

© ¢
——— du=e"E .
b S = () (B.16)
and
S e 1 AIS»E 1
1) ———du=— —_— — B.17
(=1) b C%.I&»i&: A= 3 »_m mﬁ ) ( )
for 2> 1, one can write (B.14) a
a+f . a+ f
Nﬂo&ﬁ\dv“ MU QR\C.\AN\. m. R~v+ MU bﬁmckw?ls Awﬂwv
2= lo—fl v=1
with
(1)
QRN\;. ot L._ \A\khy Aw..— @v
and
o+ f .
Dog,=(—1) Y (=1)*(A=1=v)! Cpp. (B.20)
i=1+v
By writing F{)) in the form
F(x) = g,p(x) €"E (x°) + hyp(x), (B21)
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equating the derivative with (B.18), and solving the resulting differential equations
for g,5 and /5, one obtains

BB C ™ 3
FU(x)=x \,.Mo .,;hi Fi( G5+ = e*'E,(x?)
B o 1.3 3
2 Y S R Lo+ s+ AT+ —
B »\MO@I:E 2f LT Mg TAYT
x+ul_b
x?_
B.22
+x Wo St T (B.22)

where , F, and , F, are generalized hypergeometric functions [52]. In the same way
one obtains the following expression for F{3: Q

a+fi Q .HN\
Nuﬁv = x2? A
)= \.Mo 24+ 1)(24+2)

1 3

X o F, .N.+\,(,_+\xm+\ww+»w —x2) | E\(x?)
“XP O x 1 .3 3

+2x2 Yy, S R Lo+ S+ A S+ —XP

L mar e\ bRyt Ayt o

%2+ f8 Q \N

N swwwv JE(L, L4 7524 4,24 4 —x?)
£=0 v

bR\w—. ‘.‘.N«.

Zy @@ +2) (B.23)

In Figs. 9, 10, and 11 we show the functions F,;, F{J, and F) for the lowest
values of o and f.
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Note added in proof. TF and TFW theory for atoms in a magnetic field of arbitrary strength has
previously been developed in a slightly different way from ours in [53]-[55]. An interesting point made
in these papers is that the TF atom in a magnetic field has a finite radius.
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