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Properties of the electron gas in a magnetic field
and their implications for Thomas—Fermi type theories of matter
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We discuss the energy density of the homogeneous three-dimensional electron gas in a magnetic field in the Hartree—Fock
approximation and demonstrate that it exhibits a series of first-order phase transitions when new Landau levels begin to be
populated. We investigate consequences of this behavior for Thomas—Fermi type theories of matter in magnetic fields, and show
that within this approximation it leads to singular features in electron density profiles.

The properties of matter in high magnetic fields
are of interest both in the laboratory as well as in as-
trophysical contexts, where magnetic fields can be as
high as 10'2-10'® G at the surfaces of neutron stars.
We shall consider matter consisting of nuclei and non-
relativistic electrons, since this is the case of interest
at the relatively low densities (<10° g cm~3) at
which the magnetic field affects the properties of
matter appreciably. In the past a variety of theoret-
ical methods have been used to calculate the prop-
erties of such matter [1-3]. Among these are two
statistical models of matter, the Thomas-Fermi (TF)
method, and the Thomas-Fermi method with ex-
change, the so-called Thomas—Fermi-Dirac (TFD)
method. These methods have the virtue of simplic-
ity, and in the absence of magnetic fields they have
been shown to be asymptotically exact in the limit of
infinitely large atomic numbers [4,5]. Previous ap-
plication of these methods to matter in a magnetic
field has been confined to the case of fields so high
that only the lowest Landau level is occupied [3]. In
this Letter we discuss general properties of these the-
ories, and show that qualitatively new effects arise
when electrons occupy more than the lowest Landau
level.

The basic ingredients in the TF and TFD methods

are the energy densities of the spatially homogeneous
electron gas treated as a free gas or in the Hartree—
Fock (HF) approximation, and we begin by dis-
cussing them. The energy levels of a non-relativistic
free electron in a magnetic field are given by
; p*

€poo=(+3+0) g+ I (1)
where « is a non-negative integer specifying the Lan-
dau level, o 1s the spin, p is the momentum along the
field, m 1s the electron mass, and wg=|e|B/mc is
the cyclotron frequency. For a non-interacting elec-
tron gas in its ground state, new bands specified by
the quantum numbers o and ¢ begin to be filled at
certain threshold densities n},. For densities slightly
greater than a threshold density, added electrons go
primarily into the newly occupied band, because its
density of states has a one-dimensional character, and
is therefore singular at low kinetic energies. As a con-
sequence the compressibility of the electron gas be-
havesas 1/(n—n},) for njust above n%,. This phys-
ics is essentially the same as that which gives rise to
the de Haas-van Alphen effect.

We next consider the effect of the exchange part of
the interaction in the Hartree-Fock approximation.
The effect of the long-range part of the Coulomb in-
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teraction is assumed to be compensated by a uni-
form neutralizing background of positive charge. In
TF and TFD theories it is assumed that locally the
energy density is given by that for a homogeneous
electron gas. We must therefore take the basic elec-
tron states to be plane waves, and consequently in-
homogeneous ground states, such as charge density
waves and Wigner crystals [6], play no role here. The
sum of the kinetic and exchange energy densities of
a homogeneous electron gas may be written in the
form

~

w= Y (5’;7 +(a+%+a)fzw8>nm

paoc

_% Z Vaﬂ(p_p’)”pownp'ﬁav (2)
pp’afo

where 71,4, 1s the total density of electrons with quan-
tum numbers p, &, and o. Since the Coulomb inter-
action leaves an electron’s spin unaltered, the sum-
mation in the second term of eq. (2) is taken only
over the common spin, ¢. The single particle energy
levels in a magnetic field are degenerate, and are
characterized by p, «, 0, and an additional quantum
number, M, a possible choice for which is the an-
gular momentum about the direction of the field, and
Npao 18 the density of electrons with all allowed val-
ues of M but given values of p, « and o. Since the
density per unit area of states of different M is
(2mag ) ~!, where ay= (#ic/ |e| B)'/? is the magnetic
length, it follows that 71,4, =fyae/2Ta L, Where fony
is the occupation number of a single state, and L is
the normalization length in the diréction of the field.
As we explain in more detail elsewhere [7], the ef-
fective exchange energy summed over allowed M
values is given by

Ves@)=2x [ pdp | dze=Ln)Lyy)
0 —co

2

e?

X )

where L, is a Laguerre polynomial and y=p?/2a%.
For av= =0 this expression is equivalent to that of
Danz and Glasser [8]. From eq. (2), one can obtain
the quasiparticle energy €,q,=0w/81,4,, and the ef-
fective mass, My, given by d€,u,/0p=p/mM}s,. One
finds
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X ; [Veap(P—Drpe) = Vap(P+Drgs) ] - (4)

Here pF[,,'is the Fermi momentum of a band, given
bY Drpo=2n*hafing,, where ng, =73, 1,4, is the total
density of electrons in a band. For small g, V,4(q)
diverges as 2naZe?In(%/qay) for a=f and there-
fore the effective mass varies as 1/In(|p—pPras| ~")
for p close to the Fermi momentum of the band. In
a magnetic field the low temperature specific heat of
the electron gas in the Hartree-Fock approximation
therefore behaves as 7/In(7~'), as it does in zero
field [9].

The equilibrium populations of bands are deter-
mined by equating the chemical potentials. Thus,

'since the exchange energy is spin-dependent, the de-

generacy between states in the ath Landau level with
o= —13 and the (a—1)th with o=1 is broken. This
leads to a splitting of the threshold densities, and to
a spin dependence of the effective mass and the cy-
clotron frequency. An additional effect of the ex-
change interaction is ‘that the cyclotron frequency
depends on the Landau index «, and consequently
oscillatory contributions to the thermodynamic
functions will not be periodic in 1/B.

Next we demonstrate that in the Hartree—-Fock ap-
proximation the electron gas has a negative com-
pressibility when the density of electrons in a band
is small. We investigate stability by calculating the
second derivative of the energy density with respect
to the populations of the bands. One finds

azw _ a:u'aa 2n2fla%—1pFaa S
OnueOng, — Ong, * b

PFao

= % [ Vap(PFaa +PF/30) + Vap(PFaa —PFﬂa) ]) .

(3)

Here u,, is the chemical potential of electrons in
Landau orbital & and with spin 6. We note that §?w/
0ny,0ng, 1s well defined for o= because the di-
vergent term Vo 4(Deas— Drps) 10 €q. (5) is cancelled
by an equal and opposite contribution to m%..,, and
it may be written as J,, [27%%a} Prao/ 1)

PFas

Vaa(2Dras) 1, Where mj.,. is given by eq. (4), but
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without the term for f=a. The results for m* and
92w/ 0n,,9n,, are analogous to the corresponding
results for a three-dimensional Fermi liquid [10],
except that discrete sums over parallel and antipar-
allel relative orientations of momenta appear in the
present one-dimensional case instead of integrals over
angles between quasiparticle momenta.

Let us now examine the second derivative (5) for
o= f. In the absence of the exchange interaction this
tends to zero as n,,—0 from above, since prgo~ Nuo-
On the other hand, V,,(2pras) is positive definite
and diverges logarithmically. Thus d2w/dn2, is neg-
ative in the vicinity of #,,=0. This behavior is
suggestive of a thermodynamic instability. More de-
tailed investigations [7] show that at a given density
there can be multiple solutions of the HF equations.
One finds that in the state with lowest energy density
for given electron density, the population of a band
is not a continuous function of the total density;
rather it increases discontinuously from zero to a fi-
nite value at the density #. (depending on the band)
at which the energies of the two lowest energies so-
lutions of the HF equations cross. The chemical po-
tential drops discontinuously at 7= ., which implies
that w is not a convex function of » in the neigh-
borhood of n.. We emphasize that this property does
not hinge on the logarithmic singularity of the ma-
trix element for small p=2pg,,. This singularity dis-
appears when screening is taken into account, but
provided the effective exchange interaction is posi-
tive and nonzero as p—0, w will not be convex.

We now turn to the application of the above re-
sults to Thomas—Fermi theory, which is an approx-
imate method for determining the properties of a
system of nuclei (usually considered as point charges
Z.e at fixed positions, X;) and electrons which are
assumed to form a gas with density n=n(x), where
x is the position. The TF ground state energy of a
neutral system is given by the infimum of the so-
called TF energy functional of n, subject to the con-
dition that the total electronic charge equals the
charge of the nuclei. The corresponding variational
equation for the electron density is the TF equation

w [n(x)]—e@(x)—A=0, ifn(x)>0,
>0, ifn(x)=0. (6)

Here the prime denotes differentiation with respect
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to n, w is the kinetic part of the electronic energy
density (in TF theory) or the sum of the kinetic en-
ergy density and the exchange energy density (in
TFD theory), @(x) is the total electrostatic poten-
tial due to both nuclei and electrons, and 4 is a con-
stant, which is equal to the total electrochemical po-
tential of the electrons. In TFD theory, the function
w(n) is given by expression (2) evaluated for those
electron densities 7,4, in the individual bands that
minimize the energy (2) for a given total density
n= Zpcw Npag-

As discussed by Lieb [5] the TF equation has a
unique solution provided the energy density, w, sat-
isfies the following conditions:

(i) w is continuously differentiable, convex and
w(0)=0.

(ii) For large n, w' (n) >cn'/>*¢, where c and €>0.

(iii) For small n, w' (n) <w’ (0)+c'n'/3>*¢, where
¢’ <oo and €>0.

More generally, it is in fact sufficient to require
(1)-(iii) for the convex hull of the energy density,

w*(x) =sup{l(x)|{(y)=ay+b, [(y)<w(y)} .

(7)

The existence and uniqueness of a solution of the TF
equation thus depends only on the behavior of w* at
low and high electron densities.

The basic reason for this is that the solution of the
TF equation with energy density w* does not take on
values in intervals where w* is different from w (ref.
[11], cf. ref. [5], theorem 3.19). This last result can
be understood as follows: Since the compressibility
k= [n?w*" (n)]~" diverges for densities where w* is
not strictly convex, it is clear that such densities can
only occur in regions where the local pressure
P=nw*' (n) —w*(n) is strictly constant. In such re-
gions the electrostatic potential @ must also be con-
stant by the equation of hydrostatic equilibrium,
VP=enV®, which follows from the TF equation (6).
This, however, contradicts the Poisson equation
V2P(x)=dme[n(x) -2, Z:0(x—X;)] for n(x)>0.
We note in passing that the argument remains true
even if the positive charge has a continuous distri-
bution, as long as the positive charge density avoids
intervals where w* is not strictly convex.

From this result it follows (cf. ref. [5], theorem
6.8, and ref. [7]) that the TF equation with energy
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function w has exactly the same solution as the equa-
tion with energy function w*. In particular this so-
lution does not take on values in density intervals
where w is not strictly convex. Thus for the energy
function such as the one shown in fig. 1, the solution
of the TF equation does not take on values for the
electron density less than 7 (® or in the interval (n(",
n®). A TF calculation for an isolated atom with this
w would show a density profile as pictured sche-
matically in fig. 2. The density jump at the atomic
edge arises because the pressure P vanishes for
n<n, while the absence of densities between r (!
and n® means that the two phases with densities

Fig. 1. Schematic sketch of an energy density, w, and its convex
hull, w*.

Fig. 2. Schematic sketch of the electron density in an atom in the
Thomas-Fermi-Dirac approximation for the energy function
shown in fig. 1.

PHYSICS LETTERS A

7 January 1991

n and n® are in equilibrium. For nV<n<n @),
the function w* is obtained from w by making a dou-
ble tangent construction, so P(n*?)=P(n®) and
u(n)=pu(n®), which are the usual thermody-
namic conditions for phase equilibrium.

As we described above, in the Hartree-Fock ap-
proximation the energy density of the electron gas in
a magnetic field displays an infinite number of den-
sity intervals where w is not a convex function of .
In TFD theory this leads to jumps in electronic den-
sity profiles of the type illustrated in fig. 2. As we shall
show elsewhere [7], the characteristic size of the
density jumps in strong fields is determined by the
small parameter ay/ao, where ao is the Bohr radius,
which is a measure of the ratio of the exchange en-
ergy to a typical kinetic energy.

In TF theory in a magnetic field w” vanishes only
at isolated points, but even this will have qualitative
effects on the behaviour of #(x). For example, in the
spherically symmetric case considered above one has
w" (n(r))dn/dr=dw’ (n(r))/dr=ed®(r)/dr by the
TF equation, so dn/dr=[w"(n(r))]~" d@(r)/dr
diverges if w” approaches zero. This remark applies
to the kinetic part of the energy functional (2), when
n approaches a threshold density from above.

Finally we consider possible molecular binding of
atoms in high magnetic fields. For the case of zero
field, it has been shown that in TF and TFD theory
there is no binding, that is, the energy will always de-
crease if the nuclei are separated into two or more
groups, and groups are moved far away from each
other. Thus, while these theories are useful for de-
scribing the main features of electronic densities and
ground state energies, they are unsuitable for com-
puting effects as delicate as molecular binding. Teller
[12] investigated this question in the standard TF
and TFD approximations in which the kinetic en-
ergy is proportional to #n°/3, and the exchange energy
is negative and proportional to #n*3. The paper by
Lieb, Simon, and Benguria [4,5,11] are also con-
cerned mainly with these special forms of w. How-
ever, their extension of Teller’s work is quite general,
and it follows from theorem 3.23 of ref. [5] that
binding does not occur for any w satisfying condi-
tions (i)-(iii) given above. This is also obvious from
the proof given in ref. [13] for w(n)=constXn>'3;
granted existence of a solution of (6), the only spe-
cial property of this function used is its convexity.
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But, as remarked above, the TF energies calculated
with an arbitrary w are the same as those calculated
with its convex hull, w*. Thus TF theory is well de-
fined and the no-binding theorem holds for any w,
provided its convex hull satisfies conditions (i)-(iii)
above. This is indeed the case for the energy den-
sities considered above: For large #, the effects of the
magnetic field and exchange energy become negli-
gible and therefore w*~cn>/3. For small n, w*' <¢'n?
in the absence of the exchange term where ¢ and ¢’
are constants, and w*’ is a negative constant if the
exchange energy is included.

In this paper we have restricted our attention to
theories of the Thomas-Fermi type in which the
electronic energy density at a given point depends
only on the value of the electronic density at the same
point. More generally, one can consider theories
where non-local effects are taken into account by, for
example, including a von Weizsicker term, which
depends on the gradient of the electron density. In
such theories the density jumps found in theories with
local energy functionals will tend to be smoothed out.
These effects will be studied in more detail elsewhere

[7].
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